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Time-dependent properties of the speckled intensity patterns created by scattering coherent radiation from
materials undergoing spinodal decomposition are investigated by numerical integration of the Cahn-Hilliard-
Cook equation. For binary systems which obey a local conservation law, the characteristic domain size is
known to grow in timer as R=[B~]" with n=1/3, whereB is a constant. The intensities of individual
speckles are found to be nonstationary, persistent time series. The two-time intensity covariance at wave vector
k can be collapsed onto a scaling function Céiv ), wherest=k*"B|r,— 7,| andt =k'"B(r,+ 7,)/2. Both
analytically and numerically, the covariance is found to dependtoonly throughﬁt/t_in the smallit limit
and 8t/t 1" in the Iarget_limit, consistent with a simple theory of moving interfaces that applies to any
universality class described by a scalar order parameter. The speckle-intensity covariance is numerically
demonstrated to be equal to the square of the two-time structure factor of the scattering material, for which an
analytic scaling function is obtained for Ia@eln addition, the two-time, two-point order-parameter correla-
tion function is found to scale a@(r/(B”\/?l”Jr ;22“),71/72), even for quite large distancesThe asymptotic
power-law exponent for the autocorrelation function is found to\be4.47, violating an upper bound con-
jectured by Fisher and Husg51063-651X%99)00311-6

PACS numbes): 64.60.Cn, 64.75-g, 61.10.Dp, 05.70.Ln

[. INTRODUCTION sponding to differences in the local scattering cross sections.
Figure 2 shows the central section of the scattering intensity

One of the most common ways to obtain informationcorresponding to Fig. 1, with darker shades indicating higher
about the spatial structure of a material involves the scatteintensities. The speckled appearance of the scattering inten-
ing of radiation, such as electrons, neutrons, or photons. Thety is a characteristic feature in the scattering of coherent
scattering is caused by inhomogeneities in the scatteringadiation.
cross section of the material. Depending on the nature of the Since the speckle pattern depends on the specific configu-
incident radiation, this scattering cross section is given byation of the material, it changes as the domain structure
the local value of some property of the material, such as it®volves over time. The result is that the individual speckles
density or magnetic polarization. In the first Born approxi- fluctuate around their time-dependent averages. The intensity
mation, the amplitude of the scattered wave is given by thdluctuations are almost uncorrelatedkirspace, but the evo-
Fourier transform of that property, and the wave ve&tas
proportional to the momentum transfer as a coherent wave of
the probe radiation is scattered. For conventional radiation
sources, the wave is only coherent over a small volume and
different parts of the sample scatter independently of each
other. As a result, only the ensemble average of the scatter-
ing intensity can be observed.

On the other hand, when the coherence volume of the
wave is sufficiently large to encompass the whole scattering
volume, the unaveraged Fourier transform of the specific ~ #=
geometric structure of the material is observed. If the inho-
mogeneous scattering property of a particular sample at po-
sitionr and timer is represented as the scalar figkr, 7),

and its Fourier transform at wave vectoras z}(k,r), then 100
the observed scattering intensity is

500

400

L(k,7) =]k, 7)|?, (1) 0
0 100 200 300 400 500
where proportionality constants have been ignored. The do- X
main pattern of the order parameigfr, ) from one of our FIG. 1. Snapshot of a system undergoing spinodal decomposi-
simulations of spinodal decomposition in a two-phase matetion at the maximum simulation timer=4000. All simulations
rial is shown in Fig. 1, with the shading differences corre-reported here were conducted on 5212 lattices.
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0.3 1 scale as the speckle. There is a clear qualitative difference in
time correlations between the two time series. The changes
in the Brownian function are relatively large and the fluctua-
tions shorter lived than those of the speckle intensities pro-
duced by the phase-ordering simulation. This highlights a
property of the speckle intensities called persistefite
While the changes in a Brownian time series are indepen-
dent, the changes in a persistent time series are correlated
with each other.

In the past, photon correlation experiments using laser
light at wavelengths ranging from the infrared to the ultra-
violet have used the two-time correlations of individual
speckles to study fluctuations in many mater{@s3]. New
high-brilliance synchrotron photon sources have made coher-
ent x-ray experiments feasible. The comparative advantages
of x rays over lasers for many systems include penetration of

-0.3 . . r . T ] optically opaque materials and the ability to investigate
) K g . - shorter length scales. Coherent x-ray intensity fluctuation
% spectroscopy(XIFS) experiments have already been per-

formed on a number of materiald—7]. Recently, the two-

FIG. 2. Central region of the scattering intensity for one realiza-tjme correlations in speckle intensity were measured by
tion of the simulation at time-=4000. The speckling of the scat- w|Eg for a sodium borosilicate glass undergoing spinodal
tering pattern is apparent, with darker shades indicating brighte&ecompositior{S].
speckles. Our intent with this paper is to make a theoretical study of
how speckle experiments can be exploited to investigate the
. ; s - L relaxation of homogeneous materials towards a new, hetero-
correlations in the scattering intensity at individual Wavegeneous equilibrium after a rapid change in a thermody-

vectors. ; : :
. . namic parameter such as temperature. Previd@h0| this
. Thg flgctuatlon .Of a single speckle around .the averadyas done for materials subject to phase ordering, in which
intensity is shown in F|g. 3. It has been normalized at ea(?}&aselp(r,t) is not constrained by any conservation laioé
Nen called mode [11]). Here we analyze scattering from

Fig. 3 are Brownian noise fluctuations, whose tWo-time CO+ya4ariais subject to a local conservation constréimidelB

variance is exponential. That noise is constructed to have t 1)), such as the process of phase separation in a model
same single-time probability density and characteristic tim inary mixture or alloy. The dynamics of the phase separa-

tion that occurs after a high-temperature homogeneous mix-
ture is suddenly brought into the low-temperature regime of
— DS two-phase coexistence is a fundamental statistical-
"""""" Brownian 5 mechanical process that has important consequences for mul-

tiphase materials. Two examples are metallic alldyd and
Vycor glass[12].

The scaling properties of correlations in the model system
and their relationship to speckle correlations are discussed in
Sec. II. Although our focus is on mod@&, many of our
results are sufficiently general that they also apply to other
universality classes characterized by a scalar order param-
eter, such as moddl. Details of the numerical simulations
are given in Sec. lll. In Sec. IV the numerical results are
presented and compared with the theoretical scaling relations
from Sec. Il. Our conclusions are summarized in Sec. V.
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lution of the speckle pattern gives rise to nontrivial two-time

4

T

Il. SCALING THEORY

FIG. 3. Time series of the scattering intensity at one wave vec- When th | fracti f the t t
tor k for one quench to zero temperature. The intensity has been en the volume fractions of the two components are

normalized by the time-dependent structure factor averaged ové?'ql"al n-a blnary_ mixture, the homogeneous high-
100 quenches. The dotted line is a synthetic “Brownian” function temMperature phase is unstable to long-wavelength fluctua-
constructed to have the same exponential single-time probabilitfions after the quench. As a consequence, an interpenetrating
density as the scattering intensity and an exponential two-time caPattern of domains rich in one or the other of the two com-
variance with a characteristic time corresponding to that of thePonents develops immediately after the queriSee Fig. 1.
simulation intensity. The persistence of the scattering-intensity timel his intertwined structure distinguishes spinodal decomposi-
series is quite apparent when compared to the synthetic Browniaiion from many other phase-separation processes. At later
time series. times, the domains grow as the system evolves towards an
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equilibrium state with the smallest possible total interfacial Covi(k, 71, 72) =1 (K, 7)1 (K, 75)) = (1(K, 7)) }{I (K, 75))
area compatible with local conservation of the volume frac-

tions of the constituent phases. The patterns at different =k, 7)) * (K, 7)) Pk, ) b* (K, 7))
times are statistically similar, except for the characteristic . . . .

length scale of the domains. The description of the late-time = (K, ) ™ (K, 70) (oK, 72) % (K, 72))-
regime of phase separation is greatly simplified by this dy- (5)

namic scaling behavior.
Following the treatment in Refl10], we anticipate that the
A. Scaling of one-time functions joint probability density of the complex variableg&(k, ;)
Usually, the average size and shape of the growing doand #(k,,) is Gaussian. The Gaussian nature of the joint
mains can be measured using the structure factor, which Rrobability density, and thus of the marginal probability den-

proportional to the average intensity measured in scatteringity for each f//(k,r), is essentially a consequence of the
experiments. For isotropic materials the structure factor deeentral-limit theorem. It may or may not hold, regardless of

pends only on the magnitude of the wave vector, the probability density of the order parameter in real space
Y(r,7). Specifically, it does not depend on whethir, 7)
Stk,7)=(1(k,7)), (2)  can be derived from an underlying Gaussian auxiliary field,

an assumption which is customarily referred to as ‘“the
where the angular brackets represent the ensemble averagssssian approximation.” In this paper we are only con-
For locally conserved dynamics, the structure factor vanishegerned with the former approximation.
at both high and low wave vectors. The intervening maxi- |t js possible to construct a set a variables whose joint
mum occurs akmay(7), which is proportional to the inverse propability density is not Gaussian even though the marginal
of the characteristic domain size. Since the domains growrobability densities argl3], so the additional constraint that
the ring of brightest scattering contracts as the systenge joint probability density be Gaussian is an important one.
evolves toward equilibrium. The essential aspect of this assumption is that the fourth
In the scaling regime, the growth of this characteristicoment which occurs in Ed5) reduces to products of sec-
length obeys a power laviR(7)=[B]", whereBis a con-  ond moments according to Wick’s theorem. For this reason
stant. Such power-law growth is found in many differente refer to the approximation as the “Gaussian decoupling
phase-ordering processes, and the exponent is usually indgpproximation.” Fork# 0 the covariance becomes equal to

pendent of the specific properties of the material. Instead ifhe square of the two-time structure facfag],
depends on general features of the phase ordering, such as

the presence or absence of local conservation. This dynami- Cov(k,71,7)=S%(K,71,75). (6)
cal universality picture has been found to be widely appli-

cable, and a group of diverse processes that show commdrhe two-time structure factor is defined as

scaling behavior are termed a universality class]. For . .

situations described by a scalar order parameter1/2 S(K, 71, 72) = (K, 1) ¥* (K, 72)), (7

when the order parameter is not conserved @#d./3 when L . .
it is locally conserved. but it is also proportional to the Fourier transform of the

Dynamical scaling and dynamical universality can betWo-point, two-time order-parameter correlation function
combined to give a single, time-independent description of
the statistical structure of phase-separating materials. Since S(val!TZ):f dr e"C(r, 7,7y, (8)
R(7)=[B7]", a dimensionless scaled wave vector

— — n 1
=kR(7)=Kk[B7]" can be defined and the structure factor can, vere the correlation function is defined by
be collapsed onto a master curve,

C(r, 7y, 72) =((0,7) (1, 72)). 9

Similar to the case for the one-time structure factor, dy-
whered is the spatial dimension of the system. Equivalently,namical scaling also applies to the two-time structure factor.
a scaled tima=qg'"=[kR(7)]""=k™Br gives the master For isotropic media, the latter can be related to a master
curve function of the two scaled times,

Fi(q)=[B7]~"'S(k,7), )

Fl(t):kds(kﬁ). (4) Fz(tl,t2)=de(k,7'l,72). (10

are frequently used to measure the average scattering assogifferent times, the two-time structure factor cannot be mea-
ated with the structure factor. sured directly in a scattering experiment. However, its rela-
tionship to the two-time intensity covariance indicates that it
can be inferred from the fluctuations of speckles around their
average intensities. In analogy with the scaling of the two-
For individual speckles, time-dependent fluctuationstime structure factor, a scaled speckle covariance
around the average intensity are characterized by the two-
time intensity covariance function, Cov(ty,tp) =k Cov(k,7y,75) (11)

B. Scaling of two-time functions
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wherehzj(ﬁt/t_) is defined through the integration over the
F; scaled distancae,
t [}
du @9 IH(u, 8t/t)
0

FIG. 4. Schematic illustration of the moving-interface model. (16)

The edges of the shaded region represent the interface at times

and 7, and the arrows indicate the directions of motion. The i smail wave vector the structure factor can be shown to
dashed curve is the mean interface. The shaded region represents

; iy d
the volume fractionp, , which changes phase betweenand 7. obey a power lansx kA or eqUIvaIentIsz.cxt n[l?(n)+ 1
The value isB(1/2)=0 for modelA [14] and is believed to

be B(1/3)=4 for modelB [15]. For modelB, this indicates
that hy(0)=h,(0)=0 and, con_sequently, that the leading

CoV(ty,ty) =F2(ty,t,), (12)  termis the one containinigy(6t/t). The Taylor expansion is
well approximated by its leading term when that term is

provided the relationship between the speckle covariance af§uch larger than the one containiitg. This condition is
the two-time structure factor, E@6), is valid. equivalent to

The asymptotic properties of the two-time structure factor .
can be founq using.quite general arguments that should apply du W 3H(u, 8t/t)
for many universality classes. They are most concretely ex- —n d 0
pressed by focusing on the geometry of the moving inter- t7<12 §+2 o _
faces, a schematic view of which is provided in Fig. 4. The f du u?3H(u, 8t/t)
top and bottom of the figure remain inside the domains of the 0
two different phases, respectively, while the shaded region ) i , , — —
changes phase betweepand 7,. The edges of the shaded where the radio of the mteg_rals is a funct|c_>n &ift. Fort
region represent the interface between the domaing and small enough, then, the scaling of_the two-time structure fac-
5, the interface atr, is flatter. Roughly halfway between tor depends orst only throughét/t. The analogous result
these interfaces, the dashed line represents the “mean inteer modelA [which follows withhy(0)>0] was already ob-
face,” which defines a mean domain sif&7 ", wherer tained explicitly in Ref[10] for the Yeung-JasnowJ) [16]
=(7,+7,)/2. Lengths are scaled by this mean domain sizecorrelation function. This smati-behavior agrees with our
Using this specific choice of scaling length, along with thenumerical results for both modél [10] and modelB (see
ansatz that the times appear as the raibr;, the relation-  Sec. V).
ship between the two-time order-parameter correlation func-

41T (j+d/2)

can be defined. Then

17

tion and its master curve can be written 2. Two-time scaling for large t
. o When Eq.(17) is not satisfied, a large number of terms is
C(r,7q,m)=H(r/[B7]",87/7), (13 required in Eg.(15 to obtain an accurate estimate of
F,(5t,t). Since these terms contain products of powers of
where o7=|7,— 7. and st/t, F,(5t,t) should not be expected to depend &n

The master curve for the two-time structure factor can be v th hot/T for | T In Ref. 110! thi q i
found using Eq(8). When the correlation function is isotro- only througno orfarget. In ke .[10] this was emon
pic, this can be reduced to a radial integral that depends oﬁtrat?d e_pr|C|tIy for modeA using the YJ16] analytic ap-
. ) = proximation for the correlation function. The result presented
the scaled-time variablest=|t,—t;| andt=(t;+1,)/2; here is based on simple geometric arguments, which should
_ _ be valid for all universality classes with a scalar order pa-
Fo(8t,t)=(2)%¥? Nd2+1) rameter, including both modél and modelB.
. At large wave vectors the one-time structure factor for a
Xf du w3y, ,(ut™H(u,ot/t), (14  two-phase system with sharp, randomly oriented interfaces is
0 well described by Porod’s layl7], Sxk™(4*1). Here the
proportionality constant includes the interface area per unit

whereJ, is a Bessel function of the first kind of order volume (the specific surfageat time 7, A(7)><1/R(7). In
The smallt and larget behaviors ofF, can both be this limit the scattering probes the correlation function at
found using elements of the picture described here. lengthsr <R(7), where the normalized equal-time correla-

tion function decreases linearly with scaled distaAge)r
1. Two-time scaling for small t «r/R(7) [18-24,
The smalit behavior of Eq.(14) is isolated by Taylor c(r,77)
expanding the Bessel function, —=1-

(YA(7) ‘1B

(18

Fz(&,t_)zzﬂ_dlzt_ndz (_1)jt_2njh2j(5t/t_), (15) HereC, is aznonqniyersal constant._ The mean-square order
j=o0 paramete( (7)) is independent of if the two equilibrium
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values ofys are equal in magnitude or the volume fractions of The two-time structure factor in the largelimit is ob-

the two phases are constant, as they are in mBdahd we tained from Eq.(21) using the same formula for the

will simply denote it(?). d-dimensional Fourier transform of an isotropic function as
The behavior for small, but nonzero, time differences carin Ed. (14),

be deduced from the moving-interface model. The normal-

ized two-time au.tocorrelation functio@(o,fl,rz)/<¢2> is S(k,leTz):_k—d<¢2>(277)d/2nciczg

reduced from unity by an amount proportional 4q , the n

fraction of the system volume which is occupied by different

phases at; and 7, i.e., the shaded volume in Fig. 4. In the *

sharp-i : e 5 Xf du Ud/ZJd/Zfl(U)G

p-interface picture used here, this is an exact result, ob 0

tained by simple probability arguments. The proportionality

constant is easily calculated but not very useful. (22
For small time differences in a moving-interface model, —

one can construct a coordinate system based on the me¥fere we have removed fro@(r, é7,7) the constant term

interfacial position, represented by the dashed curve in Fig'hich only contributes to @ function atk=0. Defining the

4, and a coordinate locally perpendicular toAt, The spe- new dimensionless scaling variatde-kB"¢=é6t/t *~", we

cific surface of the mean interface is approximateTy obtain the asymptotic scaling form for the two-time structure

~[A(7) +A(7,)]/2, and the average distance between thdactor in the large- limit:

other interfaces is(|A|). In this approximation, ¢, T (2T

~A(]Al]). Using the scaling assumption th&{7)=[Br]" @d(z)zﬂ

«1/A(7) is the only length scale characterizing the system at (¥°)Cy

time 7, we obtain

u
nC,kB"Z)’

=—(2m%nC,z

Xj du Ud/ZJd/Z,l(U) G( é )
dR(7) er 0 22
(lA)*[R(r) =R(7y)[=—4—| _87=nB ?=n8 L. 23)
(19 This asymptotic scaling function depends knr;, and 7,
only throughz If the correlation function vanishes suffi-
The dimensionless proportionality constant betwggh|)  ciently smoothly for large, standard expansions of Fourier
and|R(7,) —R(7y)| is expected to depend on the particular yransforms[20,21] indicate that the asymptotic lardgebe-
dynamic model and the dimensionality. The relation havior of the structure factor is determined completely by the
|R(72) —R(71)|~nB" is a Taylor expansion valid for small real-space behavior of the correlation function for small

{. These results can be combined to give For z=0 it reduces to the single-time scaling functio]
C(0, 7y, nC,C T"F,(0,0) o (d+1
(<;;>TZ):1_ inzg, (20) @d(o)zc—lzzdw(d i T ' (24)
T

which is consistent with the amplitude of the largé2orod
where C, contains the proportionality constants from Eq. tail of the structure factof®,(0)=27 and ®3(0)=8].
(19). As z increases, the integral in E¢g23) tends towards the
On length scale$|A|)<r<1/K the interface should ap- Fourier transform of a constant, which vanishes for all non-
pear sharp, so the asymptotic correlation function should bgerok. Thus, ®4(z) decreases from its maximum value at
described using the mean domain size, i.e., by(Eg. with ~ z=0 towards zero ag increases.
7" replaced by?fn. The crossover between the small- In Ref. [10] the scaling behavior expressed in EgJ)

and intermediate-limits can be described in terms of a scal- Was explicitly obtained for modeA, but a nonrigorous scal-
ing functionG(x) as ing argument suggested it should hold for other dynamical

models as well. This was recently confirmed by XIFS experi-
— ments in a sodium borosilicate glass undergoing spinodal
C(r,é7,7) —1— nC,Cyd G (219 decomposition8]. This is a two-phase system with a locally
(¢?) M conserved scalar order parameter appropriately described by
model B.
with the asymptotic behavior To predict the form of4(z) in further detail, it is nec-
essary to know hoviz(x) interpolates between the limiting
1 forx<1 behaviors given by Eq21b). A detailed calculation based
(21b) on an extension of an approach used by Tomita to calculate
x  forx>1. equal-time correlation functiord.9,20 indicates thaiG(x)
B —xoxx ' asx—o and G(x)—1xx? asx—0 for moving-
Thus,C(r,87,7) depends om only through the dimension- interface model$22]. A convenient analytic form with this
less scaling combination/[nC,B"{]. As seen from the behavior isG(x)=\/1+xZ. Choosingv=nC,z and the sub-
derivation, this result is general and applies to any movingstitution u?+v2=(vy)?, the integrall (v)=®4(v/nC,) is
interface model. converted td23]

r
nC,B"¢

G(x)~{
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I(v)=—(2w)d’2f du u234,-1(u) Jul+v?
0

_ —(27r)d’2vd’2+2fwdy y2( \/yZT]_)d/Z_l
1
X Jgrp-1(VY*—1).

(29
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8¢(r,7)_
ar

L SFLY(r,7)]

oY(r,)

The first term on the right-hand side represents deterministic
relaxation of the chemical potential; the Laplacian expresses
the local conservation constraint. Processes operating at
shorter time and length scales are considered thermal noise
and are modeled by the random varialjlewhose intensity

+(r,7). (30)

Asymptotic convergence is guaranteed by the discussion fols given by a fluctuation-dissipation theorgil]. We ne-
lowing Eq. (24), and it is possible to use the approach of gject ;) because the most important sources of noise here are
evaluating a generating function for the desired integral as aghe initial conditions, which give the random domain mor-

Abel limit [23,24],

2

I(v)=—(2m) Y2 lim —;

a—0 07a
Xf dy e “Y(Vy? = 1% 1y, 4 (viy?—1).
1

(26)
This integral can be found in tabl¢85], and differentiation
followed by taking the limit leads to
(NCy2) @ DK 41 1)2(NCy2)

D y(z)=Dy(0) 2@-D21 ((d+1)/2)

(27)

whereK, is a modified Bessel function of the second kind.

For d=3 this can be numerically evaluated without diffi-

culty, while ford=2 the expression simplifies further [{26]
®,(z)=2m(1+nCyz)e "C2Z, (29

The same result was obtained in Rgf0], using the full YJ
[16] correlation function for modeRA (see the Appendix

phology at early times.

For the symmetric mixtures considered here, the param-
eters can be eliminated by appropriately normalizing the
time, length, and concentration scald®,29,3Q. Using the
same names for the new variables, the resulting dynamical
equation is

ﬁw(r,r)_
ir

1
- EVZ[(1+V2)¢(r,7)— pi(r,nl. (3

In particular, this yieldsy= + 1 for the equilibrium values of
the order parameter.

We have simulated this model on a square lattice, with
Ar=1 andL,=L,=L=512, using a simple Euler integra-
tion scheme withA 7=0.05. The initial condition was imple-
mented by choosing random values uniformly distributed be-
tween= 0.1 for each point on the lattice. Measurements were
made every 50 time units out to a maximumsef 4000. As
can be seen from Fig. 1, the domains are much smaller than
the system size, even at this latest time. Finite-size effects are
therefore not expected to affect the order-parameter dynam-
ics. Indeed, no deviations from the expected behavior of the
characteristic length are observed in the simulations.

The advantage of the present approach is that it demonstrates 1€ other numerical procedures are identical to those de-

that®4(z) is manifestly independent of the largebehavior

scribed in Ref[10]. The Laplacian was implemented using

of the correlation function, requiring only that it converges €ight-neighbor discretizatiof81,32, and the magnitude of

sufficiently smoothly to ensure the equality of the Abel limit
and the integral.

IIl. NUMERICAL PROCEDURE

the wave vectok(k) was defined in a manner consistent
with that Laplacian. In addition, the Fourier transform of the
hardened order parameter, Bgfr,7)], was used to mini-
mize the effect of finite interface width on the scattering
intensity.

In phase-separating systems no material is created or de-

stroyed. The order parameter is locally conserved, and evo-

lution occurs by diffusion along chemical-potential gradi-
ents. The Cahn-Hilliard-Cook modg27,2§ is a convenient

IV. RESULTS

The Gaussian decoupling approximation that leads to Eq.

description for the dynamics of a conserved scalar order pd6) has not been directly justified for phase-ordering systems.
rameter. The thermodynamics of the system are described @aus&an variables are often assumed in the context of the

the Ginzburg-Landau-Wilson free enerfd],
a u
f[lﬁ(r,T)]:J dr[—illfz(r,T)Jr Zl//4(r,T)

. (29

4|V,

central limit theorem, where it can be argued that many in-
dependent random variables with finite variance contribute
additively. SinceR(7) represents the average domain size, at
any given time there are on the order{afR(7)]¢ indepen-
dent domains in a system of edge lengthrhis number can

be quite large, but since the domains interact as they grow,
with material diffusing along chemical-potential gradients,
the applicability of the central limit theorem is not obvious.

For a>0, the first two terms of the integrand create aln our previous study of a system with nonconserved order
bistable local potential energy. The last term represents thparameter[10], the decoupling was justifie@ posteriori

surface tension between domains in whighhas opposite

from the numerical results. Similar justification is presented

sign. The dynamics are implemented using the Langevifere for numerical integration of the equation of motion for

equation

the conserved order parameter. When discussing the numeri-
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10° . . . 10'
I o [Cov(k,100,200)]**

4 o Simulation a

107 oxp(s) o <Re(S(k,100,200))> E (a)
10° g
107 i
[=}
[=]
o
10° ° Y
o~ PP
> 10 (=]
& 2 J

—4 o a

10 ¥ °
[s]
=]

4

10 10 o
a
(=)
o
a
10 BN &
=]
°o 0 g .

~ 10

107 . = T 5 .
0 p 10 " 10 10 10 10

FIG. 5. Probability density of the normalized scattering intensity ' : :
s(k,7)=1(k,7)/S(k,7), binned for all times and 0.88k(k) 0 [Cov(k:2000,4000)] Do"mc‘fb
<0.75. The histogram is exponential for albbserved here, indi- o <Re(S(k,2000,4000))> °
cating the Gaussian decoupling approximation used to equate th
squared two-time structure factor with the speckle covariance is &
reasonable approximation at the one-time level.

cal results, we have takd®=1 for convenience.

One way to test the validity of the assumption at the -,
single-time level is by looking at the probability density of °
the speckle intensities. Namely, E&) with 7= 7, is satis-
fied if the normalized scattering intensitys(k,r)
=1(k,7)/S(k,7), has an exponential probability density,

S(k,1,,%)
3

P(s)=exp(—s), (32) 10°

that is independent ofk(7). A single histogram was con- b=k
Structed fOI’ the norma”zed intensity fOI’ a” times and for FIG. 6. Comparison of the two-time structure facﬁék,frlﬂ-z)
0.08<k(k)<0.75[33]. The intensity at a particulark(r)  (squares and the square root of the covarianc&ov(K, 1 ,75)
was normalized by5(k,r) estimated by circular averaging (circles for (&) =,=100, 7,=200 and(b) 7;=2000, 7,=4000.
only for thesameguench experiment. The lowkrcutoff was  These examples serve as a direct test of (Y. The agreement is
chosen so that at least 20 speckles contributed to that circulgood for small wave vectors, suggesting that two-time correlation
average, while the upper cutoff was set using resultsrfor functions for real systems can be measured via speckle experiments.
# 1, (discussed beloyvNearly 16 samples contribute to the The arrows indicate the scaling varialzle 4.5 where the Gaussian
histogram in Fig. 5, and the agreement with the exponentiaﬂecoupling for two-time correlations breaks down in these simula-
form is remarkable. Other histograms were constructed t8ions. For /7 =2, as in this figure, this corresponds kdr,
check fork and = dependence, but are not shown here.~190.
Wave-vector dependence was investigated by sampling from
narrow rings of constark at all times, and time dependence t;=k3r; for (@ 7,=100, 7,=200 and(b) =, =2000, 7,
was checked by sampling &lbetween the cutoffs at single =4000. The intensity covariance and the squared structure
times. The probability density for the normalized intensity factor are equal within our numerical accuracy for suffi-
does not appear to depend on these variables. A similasiently smallk. However, forz=4.5 (marked by arrows in
check of the Gaussian decoupling assumption was made Hyoth parts of Fig. Bthe covariance becomes larger than the
Shinozaki and Oong34] for a cell-dynamical simulation squared structure factor, indicating the gradual breakdown of
with conserved order parameter. the Gaussian decoupling approximation for lamj@ these

The equality between the two-time structure factorsimulations. A systematic investigation of the range of valid-
squared and the two-time intensity covariance implied by théty of the Gaussian decoupling approximation, including the
Gaussian decoupling assumption can also be tested directlgossible system-size dependence of the number of indepen-
These two quantities can be estimated from the simulationdent contributions to the Fourier transfom, is left for future
using Eq.(7) and Eq.(5), respectively, with circular averag- study. In this paper all quantitative scaling results are based
ing overk in addition to the averaging over the quenches.only on data fork(k)<0.75 [33], where the squared two-
Since the real-space correlation function is an even functiotime structure factor appears to equal the speckle covariance
of r, S(k,71,7,) is real valued. We have verified that the for all times considered.
imaginary part is zero to within the accuracy of our results. The scaling functior5(t4,t,), which describes both the
The equality is tested graphically in Fig. 6 as a function oftwo-time structure factor and the related speckle covariance,
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1

power-law behavior. Fot<50 (dashed lingthe fit gives an expo-
FIG. 7. Contour plot of the scaled speckle two-time correlationnent 1.02-0.02, which agrees with our expectation for smalFor

function Corr¢, ,t;). The correlation decreases as one moves away =300 (solid line) the least-squares fit gives an exponent 0.66

from the linet,=t5, where it is unity by construction. +0.01. This agrees with what is expected from the largealing

. ) variablez= 6t /t *~" with 1—n=2/3, as well as with a recent XIFS
depends on two rescaled times. A normalized analog of thgxperimen{8].

scaled covariance, the correlation function, can be defined as o
for crossover between these regimes s 60, which corre-

(K, 7)1 (K, 7)) sponds to the shoulder in the structure fa¢tare Figs. 6 and
Corr(ty,tp) = . c —1. (33 10.
(1 (km))(1 (K, 72)) The scaling func_tiorﬂ)d(z) associated with the speckle

covariance at large is shown in Fig. @) for severalt
Since the Gaussian decoupling approximation for scattering-700. Here the normalization was determined from the
has been verified for,=7,, this quantity is unity by con- asymptotic data, where it appears thatr(®)?>~32. The
struction fort;=t,. Thus the contour plot of Corty{,t,), collapse of the data is quite good, and the agreement with the
Fig. 7, is more illustrative than one for Cdy(t,). The cor-  theoretical scaling forn,(z) from Eg. (28) is also excel-
relation function decays as one moves away from the lent forz<4.5. These results are shown on a linear-log scale
=t, diagonal. Given the symmetry under exchange,aind  in Fig. 9(b), along with the scaled two-time structure factor

t,, t and ot are more natural variables for the scaling func-data for the same (drawn as filled symbojs The fitting

tions Corr and Cov. In particulaf measures distancgn parametenC,~0.62 was determined from a nonlinear fit to
units of scaled timealong the diagonal, whilét measures the two-time structure factor data. Fitting to the covariance
distance perpendicular to the diagonal. In Fig. 7 it is apparerfiata did not significantly increase the agreement witigz).

that the speckle intensity stays correlated for Iar@;east_is This theoretu_:al scaling form gives much bgtter ove.rall
increased. As noted in RefL0], all the quantities used here @dreement with the data than more conventional choices,
are readily obtained in experiments, and the method of datdUCh as a Gaussian or Lorentzian. Beyardt the intensity

analysis should be well suited for experimental analysis a§PVarance is quite small. However, asncreases further it
well ecomes larger than the squared structure factor, which re-

. : . — mains reasonably well described z) for all z studied.

The asymptotlc.scalmg predicted for.large anq srhadn This deviation signals the breakdo%(o)f the Gaussian decou-
also be tested. F|rs_t, the charg:tensﬂc time differeate pling approximation, and is the same deviation seen at large
defined by Covét.,t)=3 Cov(0t) can be found for fixed ¢, in Fig. 6.
ranges oft. The measuredt., found by linear interpola- Measurements that include intensities only for two mea-
tion, is presented as a function bbn a log-log scale in Fig. surement timesg; andr,, correspond to rays of slopg /7,
8. The results show obvious power-law behavior at botin the (t;,t;) plane. The wave vector then serves as the
small and Iarge? A least-squares fit fot <50 gives an pargmeter |nd|cat|ng position along the ray, and the values of
exponent of 1.02 0.02, which agrees with our expectation th€ intensity covariance along the=t, ray are the structure
that in this regime the two-time structure factor scales withfactor squared. Figure 18 shows the simulation estimates

5t/t_(Sec. Il B 1. Least-squares fitting for=300 gives an for the scaled structure factd¥,(t) for several different

. . times on a log-log scale. The collapse for differers quite
exponent of 0.6 0.01, in excellent agreement with the the- reasonable. The two straight lines are provided as a reference

oretical prediction of +n=2/3 expected fronz=6t/t* " {5 the expected asymptotic behavior. The dashed line in Fig.
(Sec. 11 B 2. The fit also indicates that the characterigtic 10(a) indicates the slope corresponding to the power &w
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FIG. 9. Scaling of the covariance &/t 1~ " for several values FIG. 10. Scaling collapse of the structure fact@. Scaling of

of t is shown.(a) Linear scale(b) Linear-log scale, where data for the one-time structure factor for several different times presented on
the two-time structure factor are also shoditied symbolg. The  a log-log scale veé=k®r. The slopes of the straight lines corre-
solid curve is the theoretical form, ER7). The long-dashed and spond to the expected power lavi(k, 7)ck* at small wave vec-
short-dashed curves i@) are Gaussian and Lorentzian forms fitted tors (dashed lingand ek~ @ at large wave vectorésolid line),

to the same half width. Inspection of data indicatesr(3)?~32,  respectively. The heavy solid curve is the theory of Yeung, Oono,
and numerical fitting to the two-time structure factor data givesand Shinozaki39]. The inset shows the equivalent scaling collapse
nC,~0.62. The data collapse is good, confirming that there is &f EQ. (3). (b) Scaling of the two-time structure factor for fixed
single master curve for the speckle covariance in the larmit. ~ 71/72=1/2 and several different,. This corresponds to a cut
The deviation of the covariance data from the two-time structurdhrough Covk,7;,7,) along a line of slopg. The r;=2000 data
factor for z=4.5 indicates the gradual breakdown of the Gaussiarf€Presented by squares are the same as those represented by squares
decoupling approximation for these simulations. in Fig. &b).

kB or Fyoct "B with =4 for modelB as discussed covariance except at very largi [10]. No comparably suc-

in Sec. I B 1. The solid line corresponds to the Porod’s lawcessful theory exists for the conserved order-parameter case
result Sck @+ 1) (or F ot~ ") at high wave vectors, which considered here. Approximate forms for the one-time struc-
is an important part of the moving-interface model associture factor(none of which has the expect&d behavior at
ated with the asymptotic scaling fordy(z). The simulated smallk) have been proposed by Ohta and NoZ&8] and
structure factor reproduces both behaviors. The inset is thiey Tomita[39], Yeung, Oono, and ShinozaldQ]. Of these,
representation of the master curv¢ in terms of the scaled we find the best agreement for the latter re$88,40. The
wave vectorq=k[B7]Y%. The deviation from the expected heavy solid curve in Fig. 1@) represents this approximate
power law at smalt has been observed in other simulationsstructure factor as obtained from the differential-equation
and is expected to vanish as-o [15]. formulation ink space found in Refl40]. This theory ex-

In the case of a nonconserved order parameter, the antends a model of interface motion to phase separation and
lytic theory of Ohta, Jasnow, and KawasdklJK) [14,35  recoversi=1/3. Here it has been fit numerically to the simu-
gives excellent quantitative agreement for the one-time strudation data using one adjustable parameter. While it gives
ture factor[36,37. The YJ extension of that theofl6] to  reasonable agreement at small distances, it fails at larger dis-
two-time correlations gives good agreement for the intensitgances as seen by the deviations at srhatt Fig. 10@a).
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FIG. 12. Log-log plot of the autocorrelation vs/ r, for several
o C(r,50,100)
o C(r.100,200) (b)

values of ;. Least-squares fitting fot,; =50, 7,>2000 gives a
075 | © C(r,500,1000) ] slope of 1.440.01, which corresponds %~4.5. This value vio-
gg;gggfggg; lates the upper bound=<d conjectured by Fisher and Hu§40],

but is consistent with the constraxt (d/2)+ 2 derived by Yeung,
et al. [41] for conserved systems.

0.50 -

C(rt,.1,)

(This is a consequence of the assumption of a Gaussian aux-
iliary field.) The simulated two-time order-parameter corre-
lation function for modeB is well scaled out to quite large
using

0.25

0.00 -

Mt - r o
TR C(r,7,7)=C| ———=,—]. (34)

r/(‘:'mﬂ:zm)"a

The results for fixedr; and several, are presented in Fig.
FIG. 11. Scaling of the two-time correlation functiof@ For ~ 11(a). The zeros of the correlation function are approxi-
71 =100 and various-,. The zero crossing points remain approxi- mately stationary with respect m:r/\/m for the
mately stationary while the amplitude of oscillations decrease%lnge of times shown here. The scaling becomes less good
monotonically.(b) For severalrllrzzé. A scaling form appears to for much smaller values of;/7,. As the ratior, /7, de-

be approached at later times. The solid curve, the simulation resugreaseS' the amplitude of the oscillations also decreases. The
involving the latest time, is taken as an estimate of the scaling ~ . f
function for this ratio of times. collapse ofC(r,7,7,) ontoC(x,7,/7,) for several pairs o

71 and 7, is shown in Fig. 14b). The simulation results
. ] . appear to converge for later times, and the collapse is quite
There is also noticeable disagreement around the shoulder gbqq for r,>500. The solid curve represents the simulation
high t. A better analytic model for the locally conserved gstimate of the master curve for this ratio of times with
dynamics of phase separation is clearly still needed. —4000.

The scaling of the two-time structure factor along the ray  one last property of phase-separating materials to con-
71/7,=1/2 is shown in Fig. 1(®) for severalr;. The data sider is the autocorrelation of the order parameter,
collapse is again quite good. The largest change from thg(g 7, 7,), for 7,5 r;. In this regime(the opposite of the
one-time structure factor shown in Fig. (@Dis the disap-  small time-difference regime emphasized elsewhere in this
pearance of the Porod tail at large wave vector, which isyapey, Fisher and Husp41] have argued that the autocorre-
ling the two-time properties of the system.

It is also interesting to consider scaling for the two-time R( 7'1))}‘

R(73)/

order-parameter correlation function for largewhere it is C(0,71,7p)

not linear inr and the scattering is not governed by Porod’s

law. In Sec. 11B1, we argued that the scaling variablesthe vJ correlation function for model (see the Appendix
should ber/[B7]" and 87/7, and this gives quite good predicts\=d/2. This is a weakness of the YJ theory; the
agreement with the simulations. However, an equivalent setalue observed in experiments and simulations on médel
of scaled variables gives what we believe is a more naturdhdicate\ is clearly largef10]. For modelB, Yeung, Rao,
form for the correlation function. It is inspired by the YJ and DesaiYRD) [42] found A~4 for 7; in the scaling re-

correlation function appropriate to mod@l [10,16, Eq. gime from a numerical simulation similar to the one pre-
(A1), where scaled lengths enter B¥[R?(7)+R3(7,)]. sented here. The autocorrelation for the present simulations

(35
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V. CONCLUSIONS

The scattering intensity for two-dimensional systems un- APPENDIX

dergoing spinodal decomposition has been investigated using n fact, G(x) = VI is the form which results from the

numerical integration of the Cahn-Hilliard-Cook equation.
The results indicate that the two-time structure factor can be J theory for modeR [10,16. Those authors introduced the
.fwo-time order-parameter correlation functipkb]

measured experimentally via the speckle-intensity covari-
ance atk#0. The connection between the two quantities is

di2
established directly by comparing numerical estimates of c _2 [ 2R(1)R(7p)
both and indirectly by verifying the exponential probability vo(F,71,72) = o arest R(7,)2+R(7y)2
distribution of the scattering intensity. For the present simu-
lations, the equality between the two-time structure factor —r2
and the speckle-intensity covariance is observed to break 2. = 3| (A1)
R(71)°+R(7)

down atz=4.5. These properties were also observed in pre-

vious simulations for nonconserved dynanit8], and they ) )

should be common to any heterogeneous material with 4 this ‘fase'R(T):[BT]n W't.h n=1/2 andB=4(d—1)/d.

large number of independent domains. ExpandingR(7;) andR(,) in terms of 67 and = and ex-
An important conclusion of our study is that the scalingpressing the argument of the arcsin to lowest ordefifr

behavior of the speckle-intensity covariance at both |ar9%ndr/[Br]” we get

and smallt can be obtained from geometric arguments based

on a simple moving-interface picture. These scaling results 2 dilsr\% 1/

) —arCS| -

depend on the dynamics only implicitly through the values of Cy4(r,d7,7)= 1- 6l = 5| ==
the dynamic exponemtand the exponeng(n), which gives [B7]
the asymptotic smak- behavior of the one-time structure

factor. Specifically, we have argued that the asymptotic scal-

The expansion for arguments near unity, arc9ugr/2
ing of the two-time structure factor for Iargels in terms of \/m then gives
z=6t/t 17", with 1—n=2/3 for spinodal decomposition. )

For smallt, on the other hand, the appropriate scaling vari- o d2 n¢ d r 2
able is 5t/t_. These behaviors were recently comfirmed by Cyy(r,ér,7m)~1- \[5;772 ( \/;BTan)
XIFS studies Ref.[8,44] of spinodal decomposition and
demonstrate that experimentally observable aspects of both
the short and long length- and time-scale regimes of phaSFF*
separation can be described by relatively simple models of —— ——
interface motion. A simple form motivated by the Yeung- 2/m, Cp=vd/8, andG(x)=v1+x". In Ref. [10], the re-
Jasnow theory of phase ordering gives good agreement Wlﬂs]ultlng @alytlc scaling form for the two-time structure factor
simulation results for the correlation function. at larget, ®4(2) given by Eq.(27), was obtained for model
Even though much of the lardebehavior of modeB can A by a different method utilizing the full form, EG1). That
be understood theoretically, a complete theory of phase sepapproach also yielded a smallresult corresponding to the
ration, even one that just describes the one-time structur€aylor expansion Eq(15) and the corresponding condition

(A2)

(A3)

his correlation function corresponds to E@1) with C;

factor, is still needed. Eq. (17).
[1] J. FederFractals (Plenum Press, New York, 1988 tics (Cambridge University Press, Cambridge, 1995
[2] B. Chu, Laser Light ScatterindAcademic Press, New York, [4] S. B. Dierker, R. Pindak, R. M. Fleming, I. K. Robinson, and
1974. L. Berman, Phys. Rev. Let5, 449(1995.

[3] L. Mandel and E. WolfOptical Coherence and Quantum Op- [5] B. Chu, Q.-C. Ying, F.-J. Yeh, A. Patkowski, W. Steffen, and



5162 BROWN, RIKVOLD, SUTTON, AND GRANT PRE 60

E. W. Fischer, Langmuit1, 1419(1995. [22] P. A. Rikvold and G. Browr(unpublishegl
[6] S. Brauer, G. B. Stephenson, M. Sutton, R.'ng, E. Du-  [23] G. Korniss(private communication
fresne, S. G. J. Mochrie, G. (Gal, J. Als-Nielsen, and D. L.  [24] R. Wong,Asymptotic Approximations of Integraldcademic,

Abernathy, Phys. Rev. Let?4, 2010(1995. Boston, 1989 Chap. IV.

[7] S. G. J. Mochrie, A. M. Mayes, A. R. Sandy, M. Sutton, S. [25] I. S. Gradshteyn and |. M. RyzhiK;ables of Integrals, Series,
Brauer, G. B. Stephenson, D. L. Abernathy, and G. h@&tu and ProductgAcademic, New York, 1980 p. 721[6.645.2.
Phys. Rev. Lett78, 1275(1997). [26] Handbook of Mathematical Functionsedited by M.

[8] A. Malik, A. R. Sandy, L. B. Lurio, G. B. Stephenson, S. G. J. Abramowitz and I. A. Stegun, Natl. Bur. StandJ.S. GPO,
Mochrie, I. McNulty, and M. Sutton, Phys. Rev. Letl, 5832 Washington, DC, 1970 p. 444.

(1998. [27] J. W. Cahn and H. E. Hilliard, J. Chem. Phg8, 258(1958.

[9] G. Brown, P. A. Rikvold, and M. Grant, Physica 289, 363 [28] H. E. Cook, Acta Metall18, 297 (1970.

(1997). [29] M. Grant, M. San Miguel, J. Vials, and J. D. Gunton, Phys.
[10] G. Brown, P. A. Rikvold, M. Sutton, and M. Grant, Phys. Rev. Rev. B31, 3027(1985.
E 56, 6601(1997). [30] Explicitly: ¢— y/alu, r—r/c/a, andr— rc/(2Ma?).

[11] A comprehensive review is given by J. D. Gunton, M. San[31] Y. Oono and S. Puri, Phys. Rev. Lef8, 836(1987).
Miguel, and P. S. Sahni, iPhase Transitions and Critical [32] H. Tomita, Prog. Theor. Phy85, 47 (1991J).
Phenomenaedited by C. Domb and J. L. Lebowit#ca- [33] The maximum dimensionless wave number allowed by the dis-
demic, London, 1983 Vol. 8. Ideas of scaling in domain cretization of the continuum equationss
growth follow similar ideas in critical dynamics, P. C. Hohen- [34] A. Shinozaki and Y. Oono, Phys. Rev.4B, 2622(1993.
berg and B. I. Halperin, Rev. Mod. Phy49, 435 (1977. A [35] T. Ohta, Ann. Phys(N.Y.) 158 31(1984.
recent specialized review is given by A. J. Bray, Adv. Phys.[36] G. Brown, P. A. Rikvold, and M. Grant, Phys. Rev5B, 5501

43, 357 (1994. (1998.

[12] M. Tomozawa, inEncyclopedia of Materials Science and En- [37] The result for the amplitude in Porod's 1d:8] was regretta-
gineering edited by M. B. Bever(Pergamon Press, Oxford, bly rendered incorrectly after Eq9) in Ref.[36]. Using the
1986, p. 3493. notation of that paper, the result should bE(q)

[13] A. Stuart and J. K. Ordkendall's Advanced Theory of Statis- =29700"D2 [ (d+1)/2]aq™@* V), consistent with the ex-
tics, 5th ed.(Griffin, London, 1987, Vol. 1. pressions in Eq(24) of the present paper and E&.9) of Ref.

[14] T. Ohta, D. Jasnow, and K. Kawasaki, Phys. Rev. L4%. [10].

1223(1982. [38] T. Ohta and H. Nozaki, irBpace-Time Organization in Mac-
[15] C. Yeung, Phys. Rev. Let61, 1135(1988. romolecular Fluids Vol. 51 of Springer Series in Chemical
[16] C. Yeung and D. Jasnow, Phys. Rev4B 10 523(1990. Physics edited by F. Tanaka, M. Doi, and T. Oht&pringer,
[17] G. Porod, inSmall Angle X-ray Scatteringdited by O. Glatter Berlin, 1989.

and L. Kratky (Academic, New York, 1983 A. Guinier and  [39] H. Tomita, Prog. Theor. Phy80, 521 (1993.
G. Fournet,Small-Angle Scattering of X-ray@Viley, New [40] C. Yeung, Y. Oono, and A. Shinozaki, Phys. Re4%& 2693

York, 1955. (1994.
[18] P. Debye, H. R. Anderson, and H. Brumberger, J. Appl. Phys[41] D. S. Fisher and D. A. Huse, Phys. Rev.3B, 373(1988.
28, 679(1957. [42] C. Yeung, M. Rao, and R. Desai, Phys. Rev.58 3073
[19] H. Tomita, Prog. Theor. Phy32, 656(1984); 75, 482(1986. (1996.
[20] H. Tomita, inFormation Dynamics and Statistics of Patterns [43] B. P. Lee and A. D. Rutenberg, Phys. Rev. L&, 4842
edited by K. Kawasaki, M. Suzuki, and A. Onuiorld Sci- (1997.
entific, Singapore, 1990 [44] F. Livet, F. Bley, R. Caudron, D. Abernathy, C. Detlefs, G.

[21] A. Erddyi, Asymptotic Expansiond®over, New York, 1958 Gribel, and M. Suttor{unpublisheg



