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Evolution of speckle during spinodal decomposition
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Time-dependent properties of the speckled intensity patterns created by scattering coherent radiation from
materials undergoing spinodal decomposition are investigated by numerical integration of the Cahn-Hilliard-
Cook equation. For binary systems which obey a local conservation law, the characteristic domain size is
known to grow in timet as R5@Bt#n with n51/3, whereB is a constant. The intensities of individual
speckles are found to be nonstationary, persistent time series. The two-time intensity covariance at wave vector

k can be collapsed onto a scaling function Cov(dt, t̄ ), wheredt5k1/nBut22t1u and t̄ 5k1/nB(t11t2)/2. Both

analytically and numerically, the covariance is found to depend ondt only throughdt/ t̄ in the small-t̄ limit

and dt/ t̄ 12n in the large-t̄ limit, consistent with a simple theory of moving interfaces that applies to any
universality class described by a scalar order parameter. The speckle-intensity covariance is numerically
demonstrated to be equal to the square of the two-time structure factor of the scattering material, for which an

analytic scaling function is obtained for larget̄ . In addition, the two-time, two-point order-parameter correla-
tion function is found to scale asC„r /(BnAt1

2n1t2
2n),t1 /t2…, even for quite large distancesr. The asymptotic

power-law exponent for the autocorrelation function is found to bel'4.47, violating an upper bound con-
jectured by Fisher and Huse.@S1063-651X~99!00311-6#

PACS number~s!: 64.60.Cn, 64.75.1g, 61.10.Dp, 05.70.Ln
on
tte
T
rin
th
b
i

xi
th

e
tio
an
ac
tte

th
rin
ifi

ho
p

d

te
re

ns.
sity
her
ten-
ent

figu-
ure
les
sity

-

osi-
I. INTRODUCTION

One of the most common ways to obtain informati
about the spatial structure of a material involves the sca
ing of radiation, such as electrons, neutrons, or photons.
scattering is caused by inhomogeneities in the scatte
cross section of the material. Depending on the nature of
incident radiation, this scattering cross section is given
the local value of some property of the material, such as
density or magnetic polarization. In the first Born appro
mation, the amplitude of the scattered wave is given by
Fourier transform of that property, and the wave vectork is
proportional to the momentum transfer as a coherent wav
the probe radiation is scattered. For conventional radia
sources, the wave is only coherent over a small volume
different parts of the sample scatter independently of e
other. As a result, only the ensemble average of the sca
ing intensity can be observed.

On the other hand, when the coherence volume of
wave is sufficiently large to encompass the whole scatte
volume, the unaveraged Fourier transform of the spec
geometric structure of the material is observed. If the in
mogeneous scattering property of a particular sample at
sition r and timet is represented as the scalar fieldc(r ,t),
and its Fourier transform at wave vectork as ĉ(k,t), then
the observed scattering intensity is

I ~k,t!5uĉ~k,t!u2, ~1!

where proportionality constants have been ignored. The
main pattern of the order parameterc(r ,t) from one of our
simulations of spinodal decomposition in a two-phase ma
rial is shown in Fig. 1, with the shading differences cor
PRE 601063-651X/99/60~5!/5151~12!/$15.00
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sponding to differences in the local scattering cross sectio
Figure 2 shows the central section of the scattering inten
corresponding to Fig. 1, with darker shades indicating hig
intensities. The speckled appearance of the scattering in
sity is a characteristic feature in the scattering of coher
radiation.

Since the speckle pattern depends on the specific con
ration of the material, it changes as the domain struct
evolves over time. The result is that the individual speck
fluctuate around their time-dependent averages. The inten
fluctuations are almost uncorrelated ink space, but the evo

FIG. 1. Snapshot of a system undergoing spinodal decomp
tion at the maximum simulation time,t54000. All simulations
reported here were conducted on 5123512 lattices.
5151 © 1999 The American Physical Society
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5152 PRE 60BROWN, RIKVOLD, SUTTON, AND GRANT
lution of the speckle pattern gives rise to nontrivial two-tim
correlations in the scattering intensity at individual wa
vectors.

The fluctuation of a single speckle around the aver
intensity is shown in Fig. 3. It has been normalized at e
time by the corresponding average intensity. Also shown
Fig. 3 are Brownian noise fluctuations, whose two-time
variance is exponential. That noise is constructed to have
same single-time probability density and characteristic ti

FIG. 2. Central region of the scattering intensity for one reali
tion of the simulation at timet54000. The speckling of the sca
tering pattern is apparent, with darker shades indicating brig
speckles.

FIG. 3. Time series of the scattering intensity at one wave v
tor k for one quench to zero temperature. The intensity has b
normalized by the time-dependent structure factor averaged
100 quenches. The dotted line is a synthetic ‘‘Brownian’’ functi
constructed to have the same exponential single-time probab
density as the scattering intensity and an exponential two-time
variance with a characteristic time corresponding to that of
simulation intensity. The persistence of the scattering-intensity t
series is quite apparent when compared to the synthetic Brow
time series.
e
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n
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scale as the speckle. There is a clear qualitative differenc
time correlations between the two time series. The chan
in the Brownian function are relatively large and the fluctu
tions shorter lived than those of the speckle intensities p
duced by the phase-ordering simulation. This highlights
property of the speckle intensities called persistence@1#.
While the changes in a Brownian time series are indep
dent, the changes in a persistent time series are corre
with each other.

In the past, photon correlation experiments using la
light at wavelengths ranging from the infrared to the ultr
violet have used the two-time correlations of individu
speckles to study fluctuations in many materials@2,3#. New
high-brilliance synchrotron photon sources have made co
ent x-ray experiments feasible. The comparative advanta
of x rays over lasers for many systems include penetratio
optically opaque materials and the ability to investiga
shorter length scales. Coherent x-ray intensity fluctuat
spectroscopy~XIFS! experiments have already been pe
formed on a number of materials@4–7#. Recently, the two-
time correlations in speckle intensity were measured
XIFS for a sodium borosilicate glass undergoing spino
decomposition@8#.

Our intent with this paper is to make a theoretical study
how speckle experiments can be exploited to investigate
relaxation of homogeneous materials towards a new, het
geneous equilibrium after a rapid change in a thermo
namic parameter such as temperature. Previously@9,10# this
was done for materials subject to phase ordering, in wh
casec(r ,t) is not constrained by any conservation laws~of-
ten called modelA @11#!. Here we analyze scattering from
materials subject to a local conservation constraint~modelB
@11#!, such as the process of phase separation in a m
binary mixture or alloy. The dynamics of the phase sepa
tion that occurs after a high-temperature homogeneous m
ture is suddenly brought into the low-temperature regime
two-phase coexistence is a fundamental statistic
mechanical process that has important consequences for
tiphase materials. Two examples are metallic alloys@11# and
Vycor glass@12#.

The scaling properties of correlations in the model syst
and their relationship to speckle correlations are discusse
Sec. II. Although our focus is on modelB, many of our
results are sufficiently general that they also apply to ot
universality classes characterized by a scalar order par
eter, such as modelA. Details of the numerical simulation
are given in Sec. III. In Sec. IV the numerical results a
presented and compared with the theoretical scaling relat
from Sec. II. Our conclusions are summarized in Sec. V.

II. SCALING THEORY

When the volume fractions of the two components a
equal in a binary mixture, the homogeneous hig
temperature phase is unstable to long-wavelength fluc
tions after the quench. As a consequence, an interpenetr
pattern of domains rich in one or the other of the two co
ponents develops immediately after the quench.~See Fig. 1.!
This intertwined structure distinguishes spinodal decomp
tion from many other phase-separation processes. At l
times, the domains grow as the system evolves towards
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equilibrium state with the smallest possible total interfac
area compatible with local conservation of the volume fr
tions of the constituent phases. The patterns at diffe
times are statistically similar, except for the characteris
length scale of the domains. The description of the late-t
regime of phase separation is greatly simplified by this
namic scaling behavior.

A. Scaling of one-time functions

Usually, the average size and shape of the growing
mains can be measured using the structure factor, whic
proportional to the average intensity measured in scatte
experiments. For isotropic materials the structure factor
pends only on the magnitude of the wave vector,

S~k,t!5^I ~k,t!&, ~2!

where the angular brackets represent the ensemble ave
For locally conserved dynamics, the structure factor vanis
at both high and low wave vectors. The intervening ma
mum occurs atkmax(t), which is proportional to the invers
of the characteristic domain size. Since the domains gr
the ring of brightest scattering contracts as the sys
evolves toward equilibrium.

In the scaling regime, the growth of this characteris
length obeys a power law,R(t)5@Bt#n, whereB is a con-
stant. Such power-law growth is found in many differe
phase-ordering processes, and the exponent is usually
pendent of the specific properties of the material. Instea
depends on general features of the phase ordering, suc
the presence or absence of local conservation. This dyn
cal universality picture has been found to be widely app
cable, and a group of diverse processes that show com
scaling behavior are termed a universality class@11#. For
situations described by a scalar order parameter,n51/2
when the order parameter is not conserved andn51/3 when
it is locally conserved.

Dynamical scaling and dynamical universality can
combined to give a single, time-independent description
the statistical structure of phase-separating materials. S
R(t)5@Bt#n, a dimensionless scaled wave vectorq
5kR(t)5k@Bt#n can be defined and the structure factor c
be collapsed onto a master curve,

F18~q!5@Bt#2ndS~k,t!, ~3!

whered is the spatial dimension of the system. Equivalen
a scaled timet5q1/n5@kR(t)#1/n5k1/nBt gives the master
curve

F1~ t !5kdS~k,t!, ~4!

where F1(t)5qdF18(t
n). Incoherent scattering experimen

are frequently used to measure the average scattering as
ated with the structure factor.

B. Scaling of two-time functions

For individual speckles, time-dependent fluctuatio
around the average intensity are characterized by the
time intensity covariance function,
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Covk~k,t1 ,t2!5^I ~k,t1!I ~k,t2!&2^I ~k,t1!&^I ~k,t2!&

5^ĉ~k,t1!ĉ* ~k,t1!ĉ~k,t2!ĉ* ~k,t2!&

2^ĉ~k,t1!ĉ* ~k,t1!&^ĉ~k,t2!ĉ* ~k,t2!&.

~5!

Following the treatment in Ref.@10#, we anticipate that the
joint probability density of the complex variablesĉ(k,t1)
and ĉ(k,t2) is Gaussian. The Gaussian nature of the jo
probability density, and thus of the marginal probability de
sity for each ĉ(k,t), is essentially a consequence of th
central-limit theorem. It may or may not hold, regardless
the probability density of the order parameter in real sp
c(r ,t). Specifically, it does not depend on whetherc(r ,t)
can be derived from an underlying Gaussian auxiliary fie
an assumption which is customarily referred to as ‘‘t
Gaussian approximation.’’ In this paper we are only co
cerned with the former approximation.

It is possible to construct a set a variables whose jo
probability density is not Gaussian even though the marg
probability densities are@13#, so the additional constraint tha
the joint probability density be Gaussian is an important o
The essential aspect of this assumption is that the fo
moment which occurs in Eq.~5! reduces to products of sec
ond moments according to Wick’s theorem. For this reas
we refer to the approximation as the ‘‘Gaussian decoupl
approximation.’’ ForkÞ0 the covariance becomes equal
the square of the two-time structure factor@10#,

Covk~k,t1 ,t2!5S2~k,t1 ,t2!. ~6!

The two-time structure factor is defined as

S~k,t1 ,t2![^ĉ~k,t1!ĉ* ~k,t2!&, ~7!

but it is also proportional to the Fourier transform of th
two-point, two-time order-parameter correlation function

S~k,t1 ,t2!5E dr eik–rC~r ,t1 ,t2!, ~8!

where the correlation function is defined by

C~r ,t1 ,t2!5^c~0,t1!c~r ,t2!&. ~9!

Similar to the case for the one-time structure factor, d
namical scaling also applies to the two-time structure fac
For isotropic media, the latter can be related to a ma
function of the two scaled times,

F2~ t1 ,t2!5kdS~k,t1 ,t2!. ~10!

Since it involves the Fourier transform of the material at tw
different times, the two-time structure factor cannot be m
sured directly in a scattering experiment. However, its re
tionship to the two-time intensity covariance indicates tha
can be inferred from the fluctuations of speckles around th
average intensities. In analogy with the scaling of the tw
time structure factor, a scaled speckle covariance

Cov~ t1 ,t2!5k2d Covk~k,t1 ,t2! ~11!
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5154 PRE 60BROWN, RIKVOLD, SUTTON, AND GRANT
can be defined. Then

Cov~ t1 ,t2!5F2
2~ t1 ,t2!, ~12!

provided the relationship between the speckle covariance
the two-time structure factor, Eq.~6!, is valid.

The asymptotic properties of the two-time structure fac
can be found using quite general arguments that should a
for many universality classes. They are most concretely
pressed by focusing on the geometry of the moving in
faces, a schematic view of which is provided in Fig. 4. T
top and bottom of the figure remain inside the domains of
two different phases, respectively, while the shaded reg
changes phase betweent1 andt2. The edges of the shade
region represent the interface between the domains att1 and
t2; the interface att2 is flatter. Roughly halfway betwee
these interfaces, the dashed line represents the ‘‘mean i
face,’’ which defines a mean domain size,@Bt̄ #n, where t̄
5(t21t1)/2. Lengths are scaled by this mean domain s
Using this specific choice of scaling length, along with t
ansatz that the times appear as the ratiot2 /t1, the relation-
ship between the two-time order-parameter correlation fu
tion and its master curve can be written

C~r ,t1 ,t2!5H~r /@Bt̄ #n,dt/ t̄ !, ~13!

wheredt5ut22t1u.
The master curve for the two-time structure factor can

found using Eq.~8!. When the correlation function is isotro
pic, this can be reduced to a radial integral that depends
the scaled-time variablesdt5ut22t1u and t̄ 5(t11t2)/2;

F2~dt, t̄ !5~2p!d/2t̄ n(d/211)

3E
0

`

du ud/2Jd/221~u t̄ n!H~u,dt/ t̄ !, ~14!

whereJn is a Bessel function of the first kind of ordern.
The small-t̄ and large-t̄ behaviors ofF2 can both be

found using elements of the picture described here.

1. Two-time scaling for small t̄

The small-t̄ behavior of Eq.~14! is isolated by Taylor
expanding the Bessel function,

F2~dt, t̄ !52pd/2t̄ nd(
j 50

`

~21! j t̄ 2n jh2 j~dt/ t̄ !, ~15!

FIG. 4. Schematic illustration of the moving-interface mod
The edges of the shaded region represent the interface at timt1

and t2, and the arrows indicate the directions of motion. T
dashed curve is the mean interface. The shaded region repre
the volume fractionfD , which changes phase betweent1 andt2.
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whereh2 j (dt/ t̄ ) is defined through the integration over th
scaled distanceu,

h2 j~dt/ t̄ !5

E
0

`

du u2 j 1d21H~u,dt/ t̄ !

4 j j ! G~ j 1d/2!
. ~16!

At small wave vector the structure factor can be shown
obey a power lawS}kb(n), or equivalentlyF2} t̄ n[b(n)1d] .
The value isb(1/2)50 for modelA @14# and is believed to
be b(1/3)54 for modelB @15#. For modelB, this indicates
that h0(0)5h2(0)50 and, consequently, that the leadin
term is the one containingh4(dt/ t̄ ). The Taylor expansion is
well approximated by its leading term when that term
much larger than the one containingh6. This condition is
equivalent to

t̄ 2n!12S d

2
12D E0

`

du ud13H~u,dt/ t̄ !

E
0

`

du ud15H~u,dt/ t̄ !

, ~17!

where the radio of the integrals is a function ofdt/ t̄ . For t̄
small enough, then, the scaling of the two-time structure f
tor depends ondt only throughdt/ t̄ . The analogous resul
for modelA @which follows withh0(0).0# was already ob-
tained explicitly in Ref.@10# for the Yeung-Jasnow~YJ! @16#

correlation function. This small-t̄ behavior agrees with ou
numerical results for both modelA @10# and modelB ~see
Sec. IV!.

2. Two-time scaling for large t̄

When Eq.~17! is not satisfied, a large number of terms
required in Eq. ~15! to obtain an accurate estimate
F2(dt, t̄ ). Since these terms contain products of powers ot̄

anddt/ t̄ , F2(dt, t̄ ) should not be expected to depend ondt

only throughdt/ t̄ for large t̄ . In Ref. @10# this was demon-
strated explicitly for modelA using the YJ@16# analytic ap-
proximation for the correlation function. The result presen
here is based on simple geometric arguments, which sh
be valid for all universality classes with a scalar order p
rameter, including both modelA and modelB.

At large wave vectors the one-time structure factor fo
two-phase system with sharp, randomly oriented interface
well described by Porod’s law@17#, S}k2(d11). Here the
proportionality constant includes the interface area per u
volume ~the specific surface! at time t, A(t)}1/R(t). In
this limit the scattering probes the correlation function
lengthsr !R(t), where the normalized equal-time correl
tion function decreases linearly with scaled distanceA(t)r
}r /R(t) @18–20#,

C~r ,t,t!

^c2~t!&
512C1

r

@Bt#n
. ~18!

HereC1 is a nonuniversal constant. The mean-square or
parameter̂c2(t)& is independent oft if the two equilibrium

.
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values ofc are equal in magnitude or the volume fractions
the two phases are constant, as they are in modelB, and we
will simply denote it^c2&.

The behavior for small, but nonzero, time differences c
be deduced from the moving-interface model. The norm
ized two-time autocorrelation functionC(0,t1 ,t2)/^c2& is
reduced from unity by an amount proportional tofD , the
fraction of the system volume which is occupied by differe
phases att1 andt2, i.e., the shaded volume in Fig. 4. In th
sharp-interface picture used here, this is an exact result,
tained by simple probability arguments. The proportiona
constant is easily calculated but not very useful.

For small time differences in a moving-interface mod
one can construct a coordinate system based on the m
interfacial position, represented by the dashed curve in
4, and a coordinate locally perpendicular to it,D. The spe-
cific surface of the mean interface is approximatelyĀ
'@A(t1)1A(t2)#/2, and the average distance between
other interfaces is ^uDu&. In this approximation, fD

'Ā^uDu&. Using the scaling assumption thatR(t)5@Bt#n

}1/A(t) is the only length scale characterizing the system
time t, we obtain

^uDu&}uR~t2!2R~t1!u'
dR~t!

dt U
t5 t̄

dt5nBn
dt

t̄12n
[nBnz.

~19!

The dimensionless proportionality constant between^uDu&
and uR(t2)2R(t1)u is expected to depend on the particu
dynamic model and the dimensionalityd. The relation
uR(t2)2R(t1)u'nBnz is a Taylor expansion valid for sma
z. These results can be combined to give

C~0,t1 ,t2!

^c2&
512

nC1C2z

t̄ n
, ~20!

where C2 contains the proportionality constants from E
~19!.

On length scaleŝuDu&!r !1/Ā the interface should ap
pear sharp, so the asymptotic correlation function should
described using the mean domain size, i.e., by Eq.~18! with
t2n replaced byt̄ 2n. The crossover between the smallr
and intermediate-r limits can be described in terms of a sca
ing functionG(x) as

C~r ,dt,t̄ !

^c2&
512

nC1C2z

t̄n
GS r

nC2Bnz
D , ~21a!

with the asymptotic behavior

G~x!;H 1 for x!1

x for x@1.
~21b!

Thus,C(r ,dt,t̄) depends onr only through the dimension
less scaling combinationr /@nC2Bnz#. As seen from the
derivation, this result is general and applies to any movi
interface model.
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The two-time structure factor in the large-k limit is ob-
tained from Eq. ~21! using the same formula for th
d-dimensional Fourier transform of an isotropic function
in Eq. ~14!,

S~k,t1 ,t2!52k2d^c2&~2p!d/2
nC1C2z

t̄n

3E
0

`

du ud/2 Jd/221~u! GS u

nC2kBnz
D ,

~22!

where we have removed fromC(r ,dt,t̄) the constant term
which only contributes to ad function atk50. Defining the
new dimensionless scaling variablez5kBnz[dt/ t̄ 12n, we
obtain the asymptotic scaling form for the two-time structu
factor in the large-t̄ limit:

Fd~z![
t̄ nF2~z, t̄ !

^c2&C1

52~2p!d/2nC2z

3E
0

`

du ud/2 Jd/221~u! GS u

nC2zD .

~23!

This asymptotic scaling function depends onk, t1, and t2
only through z. If the correlation function vanishes suffi
ciently smoothly for larger, standard expansions of Fourie
transforms@20,21# indicate that the asymptotic large-k be-
havior of the structure factor is determined completely by
real-space behavior of the correlation function for smallr.
For z50 it reduces to the single-time scaling function@20#

Fd~0!5
t̄ nF2~0,t̄ !

C1
52dp (d21)/2GS d11

2 D , ~24!

which is consistent with the amplitude of the large-k Porod
tail of the structure factor@F2(0)52p and F3(0)58p].
As z increases, the integral in Eq.~23! tends towards the
Fourier transform of a constant, which vanishes for all no
zero k. Thus,Fd(z) decreases from its maximum value
z50 towards zero asz increases.

In Ref. @10# the scaling behavior expressed in Eq.~23!
was explicitly obtained for modelA, but a nonrigorous scal
ing argument suggested it should hold for other dynam
models as well. This was recently confirmed by XIFS expe
ments in a sodium borosilicate glass undergoing spino
decomposition@8#. This is a two-phase system with a local
conserved scalar order parameter appropriately describe
modelB.

To predict the form ofFd(z) in further detail, it is nec-
essary to know howG(x) interpolates between the limiting
behaviors given by Eq.~21b!. A detailed calculation based
on an extension of an approach used by Tomita to calcu
equal-time correlation functions@19,20# indicates thatG(x)
2x}x21 as x→` and G(x)21}x2 as x→0 for moving-
interface models@22#. A convenient analytic form with this
behavior isG(x)5A11x2. Choosingv5nC2z and the sub-
stitution u21v25(vy)2, the integralI (v)[Fd(v/nC2) is
converted to@23#



fo
o
a

d
fi-

ra

es
it

r d
v
i-

p
d

a
t

v

istic
ses

at
oise

are
r-

m-
the

ical

ith
-

-
be-
ere

than
are

am-
the

de-
g

f
nt
he

ng

Eq.
ms.
the

in-
ute
, at

ow,
ts,
s.
der

ed
or
eri-

5156 PRE 60BROWN, RIKVOLD, SUTTON, AND GRANT
I ~v !52~2p!d/2E
0

`

du ud/2Jd/221~u! Au21v2

52~2p!d/2vd/212E
1

`

dy y2~Ay221!d/221

3Jd/221~vAy221!. ~25!

Asymptotic convergence is guaranteed by the discussion
lowing Eq. ~24!, and it is possible to use the approach
evaluating a generating function for the desired integral as
Abel limit @23,24#,

I ~v !52~2p!d/2vd/212 lim
a→0

]2

]a2

3E
1

`

dy e2ay~Ay221!d/221Jd/221~vAy221!.

~26!

This integral can be found in tables@25#, and differentiation
followed by taking the limit leads to

Fd~z!5Fd~0!
~nC2z!(d11)/2K (d11)/2~nC2z!

2(d21)/2G„~d11!/2…
, ~27!

whereKn is a modified Bessel function of the second kin
For d53 this can be numerically evaluated without dif
culty, while ford52 the expression simplifies further to@26#

F2~z!52p~11nC2z!e2nC2z. ~28!

The same result was obtained in Ref.@10#, using the full YJ
@16# correlation function for modelA ~see the Appendix!.
The advantage of the present approach is that it demonst
thatFd(z) is manifestly independent of the large-r behavior
of the correlation function, requiring only that it converg
sufficiently smoothly to ensure the equality of the Abel lim
and the integral.

III. NUMERICAL PROCEDURE

In phase-separating systems no material is created o
stroyed. The order parameter is locally conserved, and e
lution occurs by diffusion along chemical-potential grad
ents. The Cahn-Hilliard-Cook model@27,28# is a convenient
description for the dynamics of a conserved scalar order
rameter. The thermodynamics of the system are describe
the Ginzburg-Landau-Wilson free energy@11#,

F@c~r ,t!#5E dr F2
a

2
c2~r ,t!1

u

4
c4~r ,t!

1
c

2
u“c~r ,t!u2G . ~29!

For a.0, the first two terms of the integrand create
bistable local potential energy. The last term represents
surface tension between domains in whichc has opposite
sign. The dynamics are implemented using the Lange
equation
l-
f
n

.

tes

e-
o-

a-
by

he

in

]c~r ,t!

]t
5M¹2

dF@c~r ,t!#

dc~r ,t!
1h~r ,t!. ~30!

The first term on the right-hand side represents determin
relaxation of the chemical potential; the Laplacian expres
the local conservation constraint. Processes operating
shorter time and length scales are considered thermal n
and are modeled by the random variableh, whose intensity
is given by a fluctuation-dissipation theorem@11#. We ne-
glecth because the most important sources of noise here
the initial conditions, which give the random domain mo
phology at early times.

For the symmetric mixtures considered here, the para
eters can be eliminated by appropriately normalizing
time, length, and concentration scales@10,29,30#. Using the
same names for the new variables, the resulting dynam
equation is

]c~r ,t!

]t
52

1

2
¹2@~11¹2!c~r ,t!2c3~r ,t!#. ~31!

In particular, this yieldsc561 for the equilibrium values of
the order parameter.

We have simulated this model on a square lattice, w
Dr 51 andLx5Ly5L5512, using a simple Euler integra
tion scheme withDt50.05. The initial condition was imple
mented by choosing random values uniformly distributed
tween60.1 for each point on the lattice. Measurements w
made every 50 time units out to a maximum oft54000. As
can be seen from Fig. 1, the domains are much smaller
the system size, even at this latest time. Finite-size effects
therefore not expected to affect the order-parameter dyn
ics. Indeed, no deviations from the expected behavior of
characteristic length are observed in the simulations.

The other numerical procedures are identical to those
scribed in Ref.@10#. The Laplacian was implemented usin
eight-neighbor discretization@31,32#, and the magnitude o
the wave vectork(k) was defined in a manner consiste
with that Laplacian. In addition, the Fourier transform of t
hardened order parameter, sgn@c(r ,t)#, was used to mini-
mize the effect of finite interface width on the scatteri
intensity.

IV. RESULTS

The Gaussian decoupling approximation that leads to
~6! has not been directly justified for phase-ordering syste
Gaussian variables are often assumed in the context of
central limit theorem, where it can be argued that many
dependent random variables with finite variance contrib
additively. SinceR(t) represents the average domain size
any given time there are on the order of@L/R(t)#d indepen-
dent domains in a system of edge lengthL. This number can
be quite large, but since the domains interact as they gr
with material diffusing along chemical-potential gradien
the applicability of the central limit theorem is not obviou
In our previous study of a system with nonconserved or
parameter@10#, the decoupling was justifieda posteriori
from the numerical results. Similar justification is present
here for numerical integration of the equation of motion f
the conserved order parameter. When discussing the num
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cal results, we have takenB51 for convenience.
One way to test the validity of the assumption at t

single-time level is by looking at the probability density
the speckle intensities. Namely, Eq.~6! with t15t2 is satis-
fied if the normalized scattering intensity,s(k,t)
5I (k,t)/S(k,t), has an exponential probability density,

P~s!5exp~2s!, ~32!

that is independent of (k,t). A single histogram was con
structed for the normalized intensity for all times and f
0.08,k(k),0.75 @33#. The intensity at a particular (k,t)
was normalized byS(k,t) estimated by circular averagin
only for thesamequench experiment. The lowerk cutoff was
chosen so that at least 20 speckles contributed to that circ
average, while the upper cutoff was set using results fort1
Þt2 ~discussed below!. Nearly 108 samples contribute to th
histogram in Fig. 5, and the agreement with the exponen
form is remarkable. Other histograms were constructed
check for k and t dependence, but are not shown he
Wave-vector dependence was investigated by sampling f
narrow rings of constantk at all times, and time dependenc
was checked by sampling allk between the cutoffs at singl
times. The probability density for the normalized intens
does not appear to depend on these variables. A sim
check of the Gaussian decoupling assumption was mad
Shinozaki and Oono@34# for a cell-dynamical simulation
with conserved order parameter.

The equality between the two-time structure fac
squared and the two-time intensity covariance implied by
Gaussian decoupling assumption can also be tested dire
These two quantities can be estimated from the simulat
using Eq.~7! and Eq.~5!, respectively, with circular averag
ing over k in addition to the averaging over the quench
Since the real-space correlation function is an even func
of r , S(k,t1 ,t2) is real valued. We have verified that th
imaginary part is zero to within the accuracy of our resu
The equality is tested graphically in Fig. 6 as a function

FIG. 5. Probability density of the normalized scattering intens
s(k,t)5I (k,t)/S(k,t), binned for all times and 0.08,k(k)
,0.75. The histogram is exponential for alls observed here, indi-
cating the Gaussian decoupling approximation used to equate
squared two-time structure factor with the speckle covariance
reasonable approximation at the one-time level.
lar
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t15k3t1 for ~a! t15100, t25200 and ~b! t152000, t2
54000. The intensity covariance and the squared struc
factor are equal within our numerical accuracy for suf
ciently smallk. However, forz*4.5 ~marked by arrows in
both parts of Fig. 6! the covariance becomes larger than t
squared structure factor, indicating the gradual breakdow
the Gaussian decoupling approximation for largez in these
simulations. A systematic investigation of the range of val
ity of the Gaussian decoupling approximation, including t
possible system-size dependence of the number of inde
dent contributions to the Fourier transfom, is left for futu
study. In this paper all quantitative scaling results are ba
only on data fork(k),0.75 @33#, where the squared two
time structure factor appears to equal the speckle covaria
for all times considered.

The scaling functionF2(t1,t2), which describes both the
two-time structure factor and the related speckle covarian

he
a

FIG. 6. Comparison of the two-time structure factorS(k,t1 ,t2)
~squares! and the square root of the covariance,ACovk(k,t1 ,t2)
~circles! for ~a! t15100, t25200 and~b! t152000, t254000.
These examples serve as a direct test of Eq.~6!. The agreement is
good for small wave vectors, suggesting that two-time correlat
functions for real systems can be measured via speckle experim
The arrows indicate the scaling variablez'4.5 where the Gaussian
decoupling for two-time correlations breaks down in these simu
tions. For t2 /t152, as in this figure, this corresponds tok3t1

'190.



th
d

rin

c

re

e
a
a

ot

n
it

e-

e

he

the

ale
or

to
ce

all
es,

re-

ou-
rge

a-

the
s of

s

nce
Fig.

ion
a

to

66

5158 PRE 60BROWN, RIKVOLD, SUTTON, AND GRANT
depends on two rescaled times. A normalized analog of
scaled covariance, the correlation function, can be define

Corr~ t1 ,t2!5
^I ~k,t1!I ~k,t2!&

^I ~k,t1!&^I ~k,t2!&
21. ~33!

Since the Gaussian decoupling approximation for scatte
has been verified fort15t2, this quantity is unity by con-
struction for t15t2. Thus the contour plot of Corr(t1 ,t2),
Fig. 7, is more illustrative than one for Cov(t1 ,t2). The cor-
relation function decays as one moves away from thet1
5t2 diagonal. Given the symmetry under exchange oft1 and
t2 , t̄ anddt are more natural variables for the scaling fun
tions Corr and Cov. In particular,t̄ measures distance~in
units of scaled time! along the diagonal, whiledt measures
distance perpendicular to the diagonal. In Fig. 7 it is appa
that the speckle intensity stays correlated for largerdt as t̄ is
increased. As noted in Ref.@10#, all the quantities used her
are readily obtained in experiments, and the method of d
analysis should be well suited for experimental analysis
well.

The asymptotic scaling predicted for large and smallt̄ can
also be tested. First, the characteristic time differencedtc

defined by Cov(dtc , t̄ )5 1
2 Cov(0,t̄ ) can be found for fixed

ranges oft̄ . The measureddtc , found by linear interpola-
tion, is presented as a function oft̄ on a log-log scale in Fig.
8. The results show obvious power-law behavior at b
small and larget̄ . A least-squares fit fort̄ ,50 gives an
exponent of 1.0260.02, which agrees with our expectatio
that in this regime the two-time structure factor scales w
dt/ t̄ ~Sec. II B 1!. Least-squares fitting fort̄ .300 gives an
exponent of 0.6660.01, in excellent agreement with the th
oretical prediction of 12n52/3 expected fromz5dt/ t̄ 12n

~Sec. II B 2!. The fit also indicates that the characteristict̄

FIG. 7. Contour plot of the scaled speckle two-time correlat
function Corr(t1 ,t2). The correlation decreases as one moves aw
from the linet15t2, where it is unity by construction.
e
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for crossover between these regimes ist̄ c;60, which corre-
sponds to the shoulder in the structure factor~see Figs. 6 and
10!.

The scaling functionFd(z) associated with the speckl
covariance at larget̄ is shown in Fig. 9~a! for several t̄
.700. Here the normalization was determined from t
asymptotic data, where it appears that (2pC1)2'32. The
collapse of the data is quite good, and the agreement with
theoretical scaling formF2(z) from Eq. ~28! is also excel-
lent for z&4.5. These results are shown on a linear-log sc
in Fig. 9~b!, along with the scaled two-time structure fact
data for the samet̄ ~drawn as filled symbols!. The fitting
parameternC2'0.62 was determined from a nonlinear fit
the two-time structure factor data. Fitting to the covarian
data did not significantly increase the agreement withF2(z).
This theoretical scaling form gives much better over
agreement with the data than more conventional choic
such as a Gaussian or Lorentzian. Beyondz'4 the intensity
covariance is quite small. However, asz increases further it
becomes larger than the squared structure factor, which
mains reasonably well described byF2(z) for all z studied.
This deviation signals the breakdown of the Gaussian dec
pling approximation, and is the same deviation seen at la
t1 in Fig. 6.

Measurements that include intensities only for two me
surement times,t1 andt2, correspond to rays of slopet1 /t2
in the (t1 ,t2) plane. The wave vector then serves as
parameter indicating position along the ray, and the value
the intensity covariance along thet15t2 ray are the structure
factor squared. Figure 10~a! shows the simulation estimate
for the scaled structure factorF1(t) for several different
times on a log-log scale. The collapse for differentt is quite
reasonable. The two straight lines are provided as a refere
to the expected asymptotic behavior. The dashed line in
10~a! indicates the slope corresponding to the power lawS

y

FIG. 8. Characteristic time differencedtc defined by

Cov(dtc , t̄ )5(1/2)Cov(0,t̄ ). The lines are least-squares fits

power-law behavior. Fort̄ ,50 ~dashed line! the fit gives an expo-

nent 1.0260.02, which agrees with our expectation for smallt̄ . For

t̄>300 ~solid line! the least-squares fit gives an exponent 0.

60.01. This agrees with what is expected from the large-t̄ scaling

variablez5dt / t̄ 12n with 12n52/3, as well as with a recent XIFS
experiment@8#.
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PRE 60 5159EVOLUTION OF SPECKLE DURING SPINODAL . . .
}kb(n) or F1}t n(b(n)1d), with b54 for modelB as discussed
in Sec. II B 1. The solid line corresponds to the Porod’s l
resultS}k2(d11) ~or F1}t2n) at high wave vectors, which
is an important part of the moving-interface model asso
ated with the asymptotic scaling formFd(z). The simulated
structure factor reproduces both behaviors. The inset is
representation of the master curveF18 in terms of the scaled
wave vectorq5k@Bt#1/3. The deviation from the expecte
power law at smallq has been observed in other simulatio
and is expected to vanish ast→` @15#.

In the case of a nonconserved order parameter, the
lytic theory of Ohta, Jasnow, and Kawasaki~OJK! @14,35#
gives excellent quantitative agreement for the one-time st
ture factor@36,37#. The YJ extension of that theory@16# to
two-time correlations gives good agreement for the inten

FIG. 9. Scaling of the covariance vsdt/ t̄ 12n for several values

of t̄ is shown.~a! Linear scale.~b! Linear-log scale, where data fo
the two-time structure factor are also shown~filled symbols!. The
solid curve is the theoretical form, Eq.~27!. The long-dashed and
short-dashed curves in~a! are Gaussian and Lorentzian forms fitte
to the same half width. Inspection of data indicates (2pC1)2'32,
and numerical fitting to the two-time structure factor data giv
nC2'0.62. The data collapse is good, confirming that there i

single master curve for the speckle covariance in the large-t̄ limit.
The deviation of the covariance data from the two-time struct
factor for z*4.5 indicates the gradual breakdown of the Gauss
decoupling approximation for these simulations.
i-

he

a-

c-

y

covariance except at very largedt @10#. No comparably suc-
cessful theory exists for the conserved order-parameter
considered here. Approximate forms for the one-time str
ture factor~none of which has the expectedk4 behavior at
small k) have been proposed by Ohta and Nozaki@38# and
by Tomita@39#, Yeung, Oono, and Shinozaki@40#. Of these,
we find the best agreement for the latter result@39,40#. The
heavy solid curve in Fig. 10~a! represents this approximat
structure factor as obtained from the differential-equat
formulation in k space found in Ref.@40#. This theory ex-
tends a model of interface motion to phase separation
recoversn51/3. Here it has been fit numerically to the sim
lation data using one adjustable parameter. While it gi
reasonable agreement at small distances, it fails at larger
tances as seen by the deviations at smallt in Fig. 10~a!.

s
a

e
n

FIG. 10. Scaling collapse of the structure factor.~a! Scaling of
the one-time structure factor for several different times presente
a log-log scale vst5k3t. The slopes of the straight lines corre
spond to the expected power laws,S(k,t)}k4 at small wave vec-
tors ~dashed line! and}k2(d11) at large wave vectors~solid line!,
respectively. The heavy solid curve is the theory of Yeung, Oo
and Shinozaki@39#. The inset shows the equivalent scaling collap
of Eq. ~3!. ~b! Scaling of the two-time structure factor for fixe
t1 /t251/2 and several differentt1. This corresponds to a cu
through Cov(k,t1 ,t2) along a line of slope1

2 . The t152000 data
represented by squares are the same as those represented by s
in Fig. 6~b!.
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5160 PRE 60BROWN, RIKVOLD, SUTTON, AND GRANT
There is also noticeable disagreement around the should
high t. A better analytic model for the locally conserve
dynamics of phase separation is clearly still needed.

The scaling of the two-time structure factor along the r
t1 /t251/2 is shown in Fig. 10~b! for severalt1. The data
collapse is again quite good. The largest change from
one-time structure factor shown in Fig. 10~a! is the disap-
pearance of the Porod tail at large wave vector, which
consistent with the idea that moving interfaces are cont
ling the two-time properties of the system.

It is also interesting to consider scaling for the two-tim
order-parameter correlation function for larger, where it is
not linear inr and the scattering is not governed by Poro
law. In Sec. II B 1, we argued that the scaling variab
should ber /@Bt̄ #n and dt/ t̄, and this gives quite good
agreement with the simulations. However, an equivalent
of scaled variables gives what we believe is a more nat
form for the correlation function. It is inspired by the Y
correlation function appropriate to modelA @10,16#, Eq.
~A1!, where scaled lengths enter asr 2/@R2(t1)1R2(t2)#.

FIG. 11. Scaling of the two-time correlation function.~a! For
t15100 and varioust2. The zero crossing points remain approx
mately stationary while the amplitude of oscillations decrea
monotonically.~b! For severalt1 /t25

1
2 . A scaling form appears to

be approached at later times. The solid curve, the simulation re
involving the latest time, is taken as an estimate of the sca
function for this ratio of times.
at
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e
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~This is a consequence of the assumption of a Gaussian
iliary field.! The simulated two-time order-parameter corr
lation function for modelB is well scaled out to quite larger
using

C~r ,t1 ,t2!5C̃S r

BnAt1
2n1t2

2n
,
t1

t2
D . ~34!

The results for fixedt1 and severalt2 are presented in Fig
11~a!. The zeros of the correlation function are appro
mately stationary with respect tox5r /At1

2/31t2
2/3 for the

range of times shown here. The scaling becomes less g
for much smaller values oft1 /t2. As the ratiot1 /t2 de-
creases, the amplitude of the oscillations also decreases.
collapse ofC(r ,t1 ,t2) onto C̃(x,t1 /t2) for several pairs of
t1 and t2 is shown in Fig. 11~b!. The simulation results
appear to converge for later times, and the collapse is q
good fort1>500. The solid curve represents the simulati
estimate of the master curve for this ratio of times witht2
54000.

One last property of phase-separating materials to c
sider is the autocorrelation of the order paramet
C(0,t1 ,t2), for t2@t1. In this regime~the opposite of the
small time-difference regime emphasized elsewhere in
paper!, Fisher and Huse@41# have argued that the autocorr
lation should be described by a power-law exponentl as

C~0,t1 ,t2!}S R~t1!

R~t2! D
l

. ~35!

The YJ correlation function for modelA ~see the Appendix!
predictsl5d/2. This is a weakness of the YJ theory; th
value observed in experiments and simulations on modeA
indicatel is clearly larger@10#. For modelB, Yeung, Rao,
and Desai~YRD! @42# found l'4 for t1 in the scaling re-
gime from a numerical simulation similar to the one pr
sented here. The autocorrelation for the present simulat

s

ult
g

FIG. 12. Log-log plot of the autocorrelation vst2 /t1 for several
values oft1. Least-squares fitting fort1550, t2.2000 gives a
slope of 1.4960.01, which corresponds tol'4.5. This value vio-
lates the upper boundl<d conjectured by Fisher and Huse@40#,
but is consistent with the constraintl>(d/2)12 derived by Yeung,
et al. @41# for conserved systems.
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is shown in Fig. 12, where the results have been normali
by C(0,t1 ,t1) to show the collapse for differentt1. The
inset shows the values ofl estimated from the derivative o
C(0,t1 ,t2) as a function oft2 /t1. For the two earliestt1 , l
appears to have converged to its asymptotic value. A le
squares fit to the latest times (t2.2000) for t1550 gives
l54.4760.03. Both our result and that of YRD violate th
upper boundl<d conjectured by Fisher and Huse for phas
ordering systems@41#. They are consistent with the lowe
boundl>(d/2)12 found for spinodal decomposition ind
>2 by YRD @42#. Lee and Rutenberg@43# found the same
bound for small, but nonvanishing, minority-phase volum
They point out that correlations in the minority domains a
celerate the decay of the autocorrelation.

V. CONCLUSIONS

The scattering intensity for two-dimensional systems u
dergoing spinodal decomposition has been investigated u
numerical integration of the Cahn-Hilliard-Cook equatio
The results indicate that the two-time structure factor can
measured experimentally via the speckle-intensity cov
ance atkÞ0. The connection between the two quantities
established directly by comparing numerical estimates
both and indirectly by verifying the exponential probabili
distribution of the scattering intensity. For the present sim
lations, the equality between the two-time structure fac
and the speckle-intensity covariance is observed to br
down atz*4.5. These properties were also observed in p
vious simulations for nonconserved dynamics@10#, and they
should be common to any heterogeneous material wit
large number of independent domains.

An important conclusion of our study is that the scalin
behavior of the speckle-intensity covariance at both la
and smallt̄ can be obtained from geometric arguments ba
on a simple moving-interface picture. These scaling res
depend on the dynamics only implicitly through the values
the dynamic exponentn and the exponentb(n), which gives
the asymptotic small-k behavior of the one-time structur
factor. Specifically, we have argued that the asymptotic s
ing of the two-time structure factor for larget̄ is in terms of
z5dt/ t̄ 12n, with 12n52/3 for spinodal decomposition
For small t̄ , on the other hand, the appropriate scaling va
able is dt/ t̄ . These behaviors were recently confirmed
XIFS studies Ref.@8,44# of spinodal decomposition and
demonstrate that experimentally observable aspects of
the short and long length- and time-scale regimes of ph
separation can be described by relatively simple models
interface motion. A simple form motivated by the Yeun
Jasnow theory of phase ordering gives good agreement
simulation results for the correlation function.

Even though much of the largek behavior of modelB can
be understood theoretically, a complete theory of phase s
ration, even one that just describes the one-time struc
factor, is still needed.
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APPENDIX

In fact, G(x)5A11x2 is the form which results from the
YJ theory for modelA @10,16#. Those authors introduced th
two-time order-parameter correlation function@16#

CYJ~r ,t1 ,t2!5
2

p
arcsinF S 2R~t1!R~t2!

R~t1!21R~t2!2D d/2

3expS 2r 2

R~t1!21R~t2!2D G . ~A1!

In this case,R(t)5@Bt#n with n51/2 andB54(d21)/d.
ExpandingR(t1) and R(t2) in terms ofdt and t̄ and ex-
pressing the argument of the arcsin to lowest order indt/ t̄
and r /@Bt̄ #n, we get

CYJ~r ,dt,t̄ !5
2

p
arcsinF12

d

16S dt

t̄
D 2

2
1

2 S r

@Bt̄ #nD 1•••G .

~A2!

The expansion for arguments near unity, arcsin(x)'p/2
2A2(12x), then gives

CYJ~r ,dt,t̄ !'12Ad

8

2

p

nz

t̄1/2
A11SAd

8

r

B1/2nz
D 2

.

~A3!

This correlation function corresponds to Eq.~21! with C1

52/p, C25Ad/8, andG(x)5A11x2. In Ref. @10#, the re-
sulting analytic scaling form for the two-time structure fact
at larget̄ , Fd(z) given by Eq.~27!, was obtained for model
A by a different method utilizing the full form, Eq.~A1!. That
approach also yielded a small-t̄ result corresponding to the
Taylor expansion Eq.~15! and the corresponding conditio
Eq. ~17!.
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